Opposition logic and neural network models in artificial grammar learning.
نویسندگان
چکیده
Following neural network simulations of the two experiments of, argued that the opposition logic advocated by was incapable of distinguishing between single and multiple influences on performance of artificial grammar learning and more generally. We show that their simulations do not support their conclusions. We also provide different neural network simulations that do simulate the essential results of Higham et al. (2000).
منابع مشابه
Does opposition logic provide evidence for conscious and unconscious processes in artificial grammar learning?
The question of whether studies of human learning provide evidence for distinct conscious and unconscious influences remains as controversial today as ever. Much of this controversy arises from the use of the logic of dissociation. The controversy has prompted the use of an alternative approach that places conscious and unconscious influences on memory retrieval in opposition. Here we ask wheth...
متن کاملPredictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...
متن کاملArtificial Grammar Learning and Neural Networks
Recent FMRI studies indicate that language related brain regions are engaged in artificial grammar (AG) processing. In the present study we investigate the Reber grammar by means of formal analysis and network simulations. We outline a new method for describing the network dynamics and propose an approach to grammar extraction based on the state-space dynamics of the network. We conclude that s...
متن کاملA Novel Fuzzy and Artificial Neural Network Representation of Overcurrent Relay Characteristics
Accurate models of Overcurrent (OC) with inverse time relay characteristics play an important role for coordination of power system protection schemes. This paper proposes a new method for modeling OC relays curves. The model is based on fuzzy logic and artificial neural networks. The feed forward multilayer perceptron neural network is used to calculate operating times of OC relays for various...
متن کاملComparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Raini Cashmere Goat
The artificial neural networks (ANN) are the learning algorithms and mathematical models, which mimic the information processing ability of human brain and can be used to non linear and complex data. The aim of this study was to compare artificial neural network and regression models for prediction of body weight in Raini Cashmere goat. The data of 1389 goats for body weight, height at withers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Consciousness and cognition
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2004